The Biological Evolution of Pain


B.Contestabile          First version 2007   Last version 2016





Table of Contents




1.      Introduction

2.      Basics

      2.1  Pain

      2.2  Assessment of Pain in Animals

      2.3  Evolution

      2.4  The Emergence of Qualia

3.      The Role of Pain

      3.1  Pain as an Adaptive Trait

      3.2  Non-Adaptive Pain

      3.3  Painless Evolution

4.      The Increase of Pain

      4.1  Intensity

      4.2  Quantity

      4.3  Distribution

5.      Replaying Evolution

      5.1  Randomness

      5.2  Constraints

6.      Conclusion











Starting point

The capability to feel pain increases with evolution and seems not to be limited. The capability to feel pleasure increases as well, but pain cannot be compensated by pleasure across individuals.



Type of problem

What is the role of pain in evolution?

Why does it increase?

How does the distribution of pain evolve?



The role of pain in evolution

The fact that pain states are associated with damaging experiences is the result of natural selection. Pain can be an adaptive trait and improve the survival value.

In other cases pain is only a by-product of natural selection. The same allele can produce senseless pain or superior adaptation depending on the combination with other alleles, i.e. it produces either handicapped or advantaged individuals with regard to biological fitness. If the result is a net reproductive advantage, then the allele will tend to increase in frequency in the population.



The increase of pain

Once pain improves the survival value, it starts to have an impact on evolution.

The increasing capability to feel pain has to do with the increasing importance of learning mechanisms. The importance of learning mechanisms increases with the lifetime of the creatures and with the complexity of the environment. The ehavior of long-lived creatures is shaped by painful experiences acting on these learning mechanisms. A wide range of emotions enhances the capability to respond to the environment. A wide range of emotions implies a high degree (intensity and duration) of pain. Under these premises the capability to feel a high degree of pain is superior with regard to biological fitness



The distribution of pain

Certain kinds of pain are prevented or mitigated by the phenomenon of biological altruism.

The general trend is an increasing inequality (injustice) in the distribution of pain.



Cultural level

The question, if the biological trend continuous on the cultural level is investigated in

The Cultural Evolution of Suffering






1. Introduction



Starting point

The capability to feel pain increases with evolution and seems not to be limited. The capability to feel pleasure increases as well, but pain cannot be compensated by pleasure across individuals.



Type of problem

         What is the role of pain in evolution?

         Why does it increase?

         How does the distribution of pain evolve?




2. Basics



2.1  Pain




         Pain is a synonym for physical suffering. It is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage (International Association for the Study of Pain)

         Pain is part of the body's defense system, producing a reflexive retraction from the painful stimulus, and tendencies to protect the affected body part while it heals, and avoid that harmful situation in the future (Pain, Wikipedia)


The term suffering includes all kinds of negative experiences, such as hunger, sexual deprivation etc. whereas the term pain is often restricted to tissue and nerve damage. The long-term goal is to understand the evolution of suffering. The concentration on pain corresponds to the actual priority in research.



Assessment in humans

         The major method used in human pain studies is self-reporting, e.g. on a scale from no pain to very severe pain, but how reliable is this? People can lie or deceive themselves in relation to pain [Broom, 18].

         Pain intensity can now be measured from the outside, say researchers using a technique for analyzing MRI scans. Their claim reopens the debate over whether pain can be measured objectively [Hamzelou].



         Classification of pain

         Noxious stimulus

         Pain scale




2.2  Assessment of Pain in Animals



Assessment by behavior

Why is pain so intense? A false step will leave an organism writhing in pain, crying out for days, maybe weeks before healing sets in. The cry of an animal in distress quickly attracts predators (…). It would seem that natural selection would have favored less sensitive nerves or brain sensations (The Evolutionary Problem with Pain).

Knowledge of the selective pressures affecting the species is needed before behavioral responses to pain can properly be interpreted. The vocalization of pain is a trade-off with regard to natural selection:

         Animals which live socially, can help one other when attacked by a predator. Hence the loud vocalization of pain is adaptive.

         In species which can very seldom collaborate in defense the situation is different. The predators select weak individuals and vocalizations of pain might well attack predators.

If the vocalization offers a net reproductive advantage (as in humans, primates, dogs and pigs) it will tend to increase in frequency in the population, otherwise not (as in antelopes and sheep).

[Broom, 19].



Assessment by anatomy and physiology

         It is important to differentiate between nociception and pain because the latter always encompasses an emotional component and the IASP stresses that nociceptor activation is itself not pain [Smith].

         Peripheral anatomical and most physiological aspects of the pain system vary little amongst species. However, different vertebrate groups vary considerably in the locations of function. It is not logical to assume that, because an area which has a certain function in man is small or absent in another group of vertebrates, the function itself is missing [Broom, 19]

         A perception of pain can exist without the involvement of pain receptors, but so can visual or auditory perceptions exist without their receptors being involved. The pain system should be considered as a whole [Broom, 20]



Assessment by a holistic approach

The pain system as a whole can be characterized as follows:


         Brain structures

         Pathways to higher brain structures

         Opioid receptors and substances

         The observation that analgesics reduce nociceptive response

         Avoidance learning

         Suspension of normal behavior




Theses on fish

         Fishes cannot experience pain, fear or other emotions [Rose].

         A sound assessment of the probability that conscious states occur in fish species will require knowledge of their forebrain neuroanatomy and an understanding how such structures mediate behavioral responses [Chandroo, 281-295].

         Recent research increasingly challenges the view that fishes cannot perceive pain [Segner]

         Fish are consciously aware of pain [Braithwaite].

         The electrophysiological properties of fish nociceptors are almost identical to those found in higher vertebrates suggesting the evolution of these properties occurred before the emergence of the fish groups [Sneddon]



Theses on invertebrates

         The following invertebrates are probably capable of feeling pain [Braithwaite] [Stelling]:

o   The cephalopod class of molluscs, particularly the coleoidea subclass (cuttlefish, squid, octopus)

o   Crustaceans like prawns and crabs

         Most invertebrates (particularly insects) do not feel pain [Senate of Canada].

         It is virtually certain that some invertebrates (amoebas) are not sentient [DeGrazia]




We have come a long way since Descartes, who argued that all non-human beings were merely automata, without self-awareness and incapable of feeling [Stelling, 39].

Many researchers point to a line between vertebrates and invertebrates:

         As a general rule one can say that pain in vertebrates is certain (with some exceptions like fishes where the issue is controversial).

         As a general rule one can say that pain in invertebrates is uncertain.

o   There are exceptions (like cephalopods) where pain is probable.

o   In some species (like amoebas) it is virtually certain that pain does not exist.




         Pain in Animals

         Pain in Fish

         Pain in Crustaceans

         Pain in Invertebrates




2.3  Evolution




         Evolution is change in the heritable traits of biological populations over successive generations. Evolutionary processes give rise to diversity at every level of biological organisation, including the levels of species, individual organisms, and molecules.

         The four most widely recognized evolutionary processes are natural selection, genetic drift, mutation and gene migration.

         Repeated formation of new species (speciation), change within species (anagenesis), and loss of species (extinction) throughout the evolutionary history of life on Earth are demonstrated by shared sets of morphological and biochemical traits, including shared DNA sequences. More than 99 percent of all species that ever lived on Earth are estimated to be extinct. Estimates of Earth's current species range from 10 to 14 million. (Evolution, Wikipedia)




In the mid-19th century, Charles Darwin formulated the scientific theory of evolution by natural selection, published in his book On the Origin of Species (1859). Evolution by natural selection is a process demonstrated by the observation that more offspring are produced than can possibly survive, along with three facts about populations:

1)  traits vary among individuals with respect to morphology, physiology, and behaviour (phenotypic variation)

2)  different traits confer different rates of survival and reproduction (differential fitness)

3)  traits can be passed from generation to generation (heritability of fitness)

Thus, in successive generations members of a population are replaced by progeny of parents better adapted to survive and reproduce in the biophysical environment in which natural selection takes place. This teleonomy is the quality whereby the process of natural selection creates and preserves traits that are seemingly fitted for the functional roles they perform. (Evolution, Wikipedia)


In the 1920s and 1930s the so-called modern synthesis connected natural selection, mutation theory, and Mendelian inheritance into a unified theory that applied generally to any branch of biology (…). The publication of the structure of DNA by James Watson and Francis Crick in 1953 demonstrated a physical mechanism for inheritance. Molecular biology improved our understanding of the relationship between genotype and phenotype. Advancements were also made in phylogenetic systematics, mapping the transition of traits into a comparative and testable framework through the publication and use of evolutionary trees. (Evolution, Wikipedia)


In light of discoveries made in recent decades, some biologists have argued for an extended evolutionary synthesis, which would account for the effects of non-genetic inheritance modes, such as epigenetics, parental effects, ecological and cultural inheritance, and evolvability (Evolution, Wikipedia).

The extended evolutionary synthesis considers amongst others the theory of punctuated equilibrium and the multilevel selection advocated by Stephen Jay Gould in the 1980s.

Current finding suggest that the focus on genetic mutations only captures part of the story of adaptive evolution – the slowly changing part [Laland, 42]


In this paper we concentrate on natural selection, because the emergence of pain is linked to adaptation by natural selection.


Natural selection

Under selection, individuals with advantages or "adaptive" traits tend to be more successful than their peers reproductively—meaning they contribute more offspring to the succeeding generation than others do. When these traits have a genetic basis, selection can increase the prevalence of those traits, because offspring will inherit those traits from their parents. When selection is intense and persistent, adaptive traits become universal to the population or species, which may then be said to have evolved.





This diagram was taken from the internet



Whether or not selection takes place depends on the conditions in which the individuals of a species find themselves. Adults, juveniles, embryos, and even eggs and sperm may undergo selection. Factors fostering selection include limits on resources (nourishment, habitat space, mates) and the existence of threats (predators, disease, adverse weather). Biologists often refer to such factors as selective pressures.


Subcategories of natural selection include sexual selection and ecological selection.


Selection occurs only when the individuals of a population are diverse in their characteristics—or more specifically when the traits of individuals differ with respect to how well they equip them to survive or exploit a particular pressure. In the absence of individual variation, or when variations are selectively neutral, selection does not occur.


Selection may act "negatively" as well as "positively."

         Negative selection or purifying selection decreases the prevalence of traits that diminish individuals' capacity to succeed reproductively (i.e. their fitness)

         positive selection increases the prevalence of adaptive traits.


Selection does not guarantee that advantageous traits or alleles will become prevalent within a population. Through genetic drift, such traits may become less common or disappear. In the face of selection even a so-called deleterious allele may become universal to the members of a species. This is a risk primarily in the case of "weak" selection (e.g. an infectious disease with only a low mortality rate) or small populations.

(Selection, Wikipedia).




Evolution influences every aspect of the form and behaviour of organisms. Most prominent are the specific behavioural and physical adaptations that are the outcome of natural selection. These adaptations increase fitness by aiding activities such as finding food, avoiding predators or attracting mates. Organisms can also respond to selection by cooperating with each other, usually by aiding their relatives or engaging in mutually beneficial symbiosis. In the longer term, evolution produces new species through splitting ancestral populations of organisms into new groups that cannot or will not interbreed (Evolution, Wikipedia)

         Adaptation is the evolutionary process whereby an organism becomes better able to live in its habitat or habitats. Adaptation takes place in the life-cycle, which is often quite complex.

         Adaptation is one of the two main processes that explain the diverse species we see in biology (…) The other is speciation (species-splitting or cladogenesis), caused by geographical isolation or some other mechanism.

(Adaptation, Wikipedia)

An adaptive trait is the product (the bodily part) of the adaptation, i.e. those features of a species which result from the process of adaptation.


If and only if a trait fulfills the following criteria will evolutionary biologists in general declare the trait an adaptation:

1.      The trait is a variation of an earlier form.

2.      The trait is heritable through the transmission of genes.

3.      The trait enhances (the probability of) reproductive success.

(Adaptationism, Wikipedia)


Some traits do not appear to be adaptive, that is, they appear to have a neutral or even deleterious effect on fitness in the current environment. Because genes have pleiotropic effects, not all traits may be functional (i.e. spandrels). Alternatively, a trait may have been adaptive at some point in an organism's evolutionary history, but a change in habitats caused what used to be an adaptation to become unnecessary or even a hindrance (maladaptations). Such adaptations are termed vestigial (Adaptation, Wikipedia)




2.4  The Emergence of Qualia




In philosophy qualia (singular form: quale) are subjective, conscious experiences.


The term quale was introduced into the philosophical literature in its contemporary sense in 1929 by C. I. Lewis in a discussion of sense-data theory. As Lewis used the term, qualia were properties of sense-data themselves. In contemporary usage, the term has been broadened to refer more generally to properties of experience. Paradigm examples are

         perceptual experiences (e.g. the taste of wine, the perceived redness of an evening sky)

         bodily sensations (such as pain, hunger, and itching)

         emotions (like anger, envy, or fear) and moods (like euphoria, ennui, or anxiety)

(Qualia, Internet Encyclopedia of Philosophy)


The evolutionary function of qualia – e.g. the evolution of emotions [Plutchik] – is quite well understood, but not the phenomenal aspect. The fact that the quale is a subjective experience and cannot be described in objective (physical) terms makes it one of the major issues in the philosophy of mind.

Much of the debate over the importance of qualia hinges on the definition of the term (…). As such, the nature and existence of qualia remain controversial (Qualia, Wikipedia)



Conditions for pain

With respect to the qualia pain, the following conditions have been suggested:

1.      Conscious experience

Only beings with consciousness can experience pain

2.      Phenomenal self-model

The most important phenomenological characteristic of pain is the “sense of ownership”, the non­transcendable subjective experience that it is myself who is experiencing pain right now.

3.      Negative valence

Pain is created by states representing a negative value being integrated into the phenomenal self-model (…). This does not mean that the system itself must have a full understanding of what pain really means (in terms of cognitive, conceptual or linguistic competences): it suffices that it does not want to undergo this present conscious experience, that it wants it to end. Of course, to create the aforementioned phenomenal urgency of change, the mere representation of an expected negative utility may suffice.

4.      Phenomenal transparency

Transparent phenomenal states make their representational content appear as irrevocably real, as something the existence of which you cannot doubt What is inaccessible to conscious experience is the simple fact of this experience taking place in a medium. Therefore, transparency of phenomenal content leads to the subjective impression of immediacy.

[Metzinger 2017, 246-249]


The difficulty to define qualia has to do with the difficulty to define consciousness:


1.      Consciousness is not a uniform phenomenon; it has several aspects:

         Perception of the outside world




         Higher-order reflection

[Metzinger 2009, 36].


2.      Furthermore consciousness is not an all-or-none phenomenon; it emerges gradually (see Eine interdisziplinäre Betrachtung zur Willensfreiheit)

Consequently – given the above definition – qualia emerge gradually as well. The level of complexity, at which qualia exist, is a controversial matter. The main theses are the following:

         Qualia are the result of complex brain mechanisms

         Qualia exist as elementary circuits in the brain

         The spiritual exists in the most fundamental constituents of matter



Qualia as complex phenomena

The emergence of pain out of anatomical and physiological adaptation is still a mystery.

Following some hypothetical stages in this development:

1.      Cell sensitivity develops and cells respond to potentially damaging effects.

2.      Localized body responses occur when damage occurring or likely

3.      As above but system with brain analysis; could involve whole body responses.

4.      Special features: specialized receptors and neural transmitters, sensitization possible, behavior responses, learning

5.      The next step could have been one of the following:

a)      Functioning of this system involves activation of non-essential parts or pathways in the brain.

b)      Pathways in the brain system which were initially necessary become redundant but do not cease to be activated.

6.      As a consequence of 5a) or 5b) epiphenomena exist which result in the feeling of pain

[Broom, 20]



Qualia as quanta of awareness

If qualia can be explained in the context of visual awareness, then we may have the key for understanding qualia in general.

Perhaps thinking of consciousness as being made of bits of awareness is the solution:

         Visual qualia are quanta of visual awareness produced by circuits in the brain containing hundreds to thousands of neurons. Circuits with specific topologies reproducibly create the same type of qualia and it is likely there are just a few diverse types. For example, there might only be three color qualia that produce the sensations of red, blue and green. When large numbers of these color qualia are combined in different ways, we create every possible color we humans can experience.

         Quantized visual awareness is consistent with what we know of biological systems. Basic sets of building blocks are used to create a huge variety of intricate structures in biology and this occurs at every level of complexity.

         Imagine a single quale forming long ago within the nervous system of some simple organism. If this provided a selective advantage, over time the number and type of qualia would increase and eventually lead to complex forms of visual consciousness like that found in humans.

(W.A.Escobar, Quantized Visual Awareness)



The spiritual as elementary phenomenon

         The very fundamental idea of my research is that the mental cannot be reduced to the physical and that somehow the property that, under special circumstances, enables a particular configuration of matter (e.g., the brain) to exhibit "consciousness" must be present in all matter, starting from the most fundamental constituents (Piero Scaruffi)

         The idea that the spiritual exists at the most elementary level can also be found in panpsychism, in particular in the philosophy of Albert North Whitehead.





3. The Role of Pain



3.1  Pain as an Adaptive Trait




Pain is an adaptive trait if it enhances the probability of that organism to reproduce.



The pain of a prey being wounded by a predator is adaptive, because it makes the prey flee. But there is no evolutionary pressure to stop the pain of a dying prey:

“It is easy to imagine a. gene that, say, tranquillizes gazelles when they are about to suffer a killing bite. Would such a gene be favored by natural selection? Not unless the act of tranquillizing a gazelle improved that gene's chances of being propagated into future generations. It is hard to see why this should be so and we may therefore guess that gazelles suffer horrible pain and fear when they are pursued to the death - as most of them eventually are (River out of Eden, Richard Dawkins).



The selective advantage of pain

Subjective sensations, such as pleasures and pains, are adaptive traits of organisms.

So far as we know, there is no fundamental physical reason why pleasure is attached to some circumstances and pains to others. We might have evolved to find the sensation of having a finger caught in a door intensely pleasurable, just as dung-flies may well relish the smell of excrement. On the evolutionary hypothesis, the fact that pleasures are generally associated with beneficial, and pains with detrimental, experiences, is the result of natural selection among random variations: those individuals who happen to have an association of this kind have higher biological fitness than those who have no such association, or the reverse association (No Pain - no Gain by David B.)

Emotions are set to maximize Darwinian fitness [Nesse 1991, 37].

Concerning the asymmetry between pain and pleasure see Hostility and the Minimization of Suffering.


If individuals with “the capability to feel pain” have a higher biological fitness then – conversely – those without this capability have a selective disadvantage. Example: People with congenital insensitivity to pain [Nagasako] have a reduced life expectancy.

The rare individuals who cannot feel pain fail even to experience discomfort from staying in the same position for long periods. Their unnatural stillness impairs the blood supply to their joints, which then deteriorate. Such pain-free people usually die by early adulthood from tissue damage and infections [Nesse 1998].



The range of phenomena

Human beings do experience pain, and there is a correlation between incidents of pain and tissue damage.

         Either this trait is present in the human phenotype because it was selected for, or

         its presence is a byproduct of selection for some other trait.

The first thesis is more plausible: Pain accompanies too wide a range of physical phenomena to be a byproduct of selection for something else [Saidel]


Example: A squid may feel pain very differently from a human. Shortly after a squid’s fin is crushed, nociceptors become active not only in the region of wound, but across a large part of the body. This suggests that if it feels pain then rather than being able to pinpoint the location of the wound, an injured squid may hurt all over. This makes sense insofar, as a squid (in contrast to an octopus) is not able to tend the wound. An all-over sensitivity with regard to touch and visual stimuli keeps the squid more alert and wary [Stelling, 41].



Pain is analogous to a “smoke alarm”

An obstacle to perceiving the benefits of defences arises from the observation that many individuals regularly experience seemingly worthless reactions of anxiety, pain, fever, diarrhoea or nausea. The explanation requires an analysis of the regulation of defensive responses in terms of signal-detection theory. A circulating toxin may come from something in the stomach. An organism can expel it by vomiting, but only at a price. The cost of a false alarm— vomiting when no toxin is truly present— is only a few calories. But the penalty for a single missed authentic alarm— failure to vomit when confronted with a toxin—may be death. Natural selection therefore tends to shape regulation mechanisms with hair triggers, following what we call the smoke-detector principle. A smoke alarm that will reliably wake a sleeping family in the event of any fire will necessarily give a false alarm every time the toast burns. The price of the human body’s numerous “smoke alarms” is much suffering that is completely normal but in most instances unnecessary [Nesse 1998].



The unique pain of being human

Pain researcher Patrick Wall was the first person to suggest a functional view of pain – that it should be understood as a mixture of sensation and the motivation to make it stop, not sensation alone. His starting point was the now well researched placebo effect (…). Several stimuli and situations that are not painful in animals have come to be experienced as painful for humans. This is because our obvious distress elicits help from others and hence offers a survival advantage [Finlay, 28].


Example: Labor pain appears only in humans. Primates appear to give birth with little pain. Ungulates such as horses and cattle produce large, long-limbed offspring with a substantial chance of complications, but with little evidence of distress. Any such evidence, in fact, could prove fatal by alerting predators [Finlay, 29].



Recent theses

Migraine and cluster headache seem to make no evolutionary sense. Recent research, however, suggests that

         migraine is linked to sickness behavior, which is an adaptive response to internal and external stressors, characterized by withdrawal and lethargy  

         cluster headache is linked to the fight-or-flight reaction, which is an adaptive response to external threat, characterized by motor restlessness and agitation.





3.2  Non-Adaptive Pain



Supernormal stimuli

This resemblance between the intensity of pain and the importance of the risk is not perfect, because natural selection can be a poor designer. The result is often glitches in animals, including supernormal stimuli. Such glitches help explain pains which are not, or at least no longer directly adaptive. (Pain, Wikipedia)

Also the pain resulting from a kidney stone stuck in the ureter is non-adaptive [Bateson].



Chronic pain

The severity and chronicity of some pain has always been hard to understand in the context of evolution, particularly when it actually interferes with function. Our first experience with being burned tells us to never, ever touch fire again, and we don’t and (this is the important part) we’re definitely better off for it. But when the message of pain is actually debilitating for long periods, how exactly is that sensation helping? Were cavemen with chronic back pain better hunters or something? (…) It turns out that we have a system that purposefully takes pain to the next level. It didn’t have to be that way. It was just an accident of biology, another design flaw.


The system to blame here is the infection-fighting system, the immune system, blindingly fast, agile, fierce cells bristling with biological weapons (…). A few billion of these little monsters – called neutrophils – are your best friends every time there is a genuine risk of infection — which there definitely is every time the skin is broken (…) But neutrophils have no concept of a false alarm. Internal injury — sterile tissue damage, any injury where there is exactly zero risk of infection — causes exactly the same reaction. Neutrophils rush to the scene and start doing their thing. They attack and kill any cells in the area — ours included — just in case (…). The problem is that they have a bogus alarm signal.


In a well-designed biology, the neutrophils would know the difference between injury with a risk of infection and an injury without a risk of infection. Viewed strictly as an engineering problem, this is a no-brainer: there are countless candidate chemical signatures that could do the trick, “smells” that are exclusive to each kind of damage. But the neutrophils are oblivious to those smells, because there is only one signal that does matter to them, just one telltale sign that crops up inside our very own cells, as well as on actual invaders. That’s because there’s actually an “invader” inside every single cell in our body: a welcome guest providing a critical service, without which we would literally die in seconds. However, that guest is still foreign, technically. It still smells like an invader — like bacteria, specifically.


A long, long time ago, multicellular organisms started a marriage of convenience with bacteria. Those bacteria became permanent residents of every cell in our bodies. They became, in fact, cellular organs, vital subsystems (…). They produce energy, and a great deal of it, like a power plant. Mitochondria have always stayed true to themselves, remarkably autonomous symbionts. They even still retain their own DNA. Our immune systems evolved relatively separately from the mitochondria, which remained safely tucked away inside our cells. As long as the mitochondria stay inside our cells, there’s no trouble. But when cells are damaged and mitochondria spill out into our tissue fluids, the neutrophils attack, because mitochondria look like invaders to neutrophils (…).


But neutrophils don’t even mind killing our own cells. In fact, it’s their job. They are indiscriminate better-safe-than-sorry killers that are only too happy to take out a few you-cells in the heat of battle. “It’s the only way to be sure.” And so not only is this component of inflammation completely pointless in the absence of any actual infection hazard, but healthy cells are actually killed. (…) It means that pain and injury actually get worse for no reason whatsoever (Why Does Pain Hurt? Paul Ingraham).



Idiopathic pain

Idiopathic pain (pain that persists after the trauma or pathology has healed, or that arises without any apparent cause), may be an exception to the idea that pain is helpful to survival, although some psychodynamic psychologists argue that such pain is psychogenic, enlisted as a protective distraction to keep dangerous emotions unconscious (Pain, Wikipedia)




Compromise is inherent in every adaptation. Arm bones three times their current thickness would almost never break, but Homo sapiens would be lumbering creatures on a never-ending quest for calcium. More sensitive ears might sometimes be useful, but we would be distracted by the noise of air molecules banging into our eardrums.

Such trade-offs also exist at the genetic level. If a mutation offers a net reproductive advantage, it will tend to increase in frequency in a population even if it causes vulnerability to disease. People with two copies of the sickle cell gene, for example, suffer terrible pain and die young. People with two copies of the “normal” gene are at high risk of death from malaria. But individuals with one of each are protected from both malaria and sickle cell disease. Where malaria is prevalent, such people are fitter, in the Darwinian sense, than members of either other group. So even though the sickle cell gene causes disease, it is selected for where malaria persists. Which is the “healthy” allele in this environment? The question has no answer. There is no one normal human genome—there are only genes [Nesse 1998].




3.3  Painless Evolution



Painless creatures

A flexible brain can improve the biological fitness but it does not necessarily lead to superiority over other creatures:

         Three-quarters of all known animals are insects, more than a billion for each person on the planet. More than half of the insect families survived the most catastrophic mass extinction the world has ever seen [O’Donoghue].

         Although complex species have evolved, they occur as a side effect of the overall number of organisms. The overwhelming majority of species are microscopic prokaryotes, which form about half the world's biomass despite their small size, and constitute the vast majority of Earth's biodiversity. Simple organisms have been the dominant form of life on Earth throughout its history and continue to be the main form of life up to the present day, with complex life only appearing more diverse because it is more noticeable (Evolution, Wikipedia)

Prokaryotes can be divided into Archaea and Bacteria. Bacteria are very efficient with regard to survival despite lacking intelligence. Due to their flexible genome they are able to permanently create new forms and adapt to the environment. There is a competition between the survival strategy of flexible genomes and the strategy of flexible brains and the outcome of this race is open:

o   Bacteria always find ways to outwit the defensive strategies of the human body and the human medicine

o   Medical research is permanently expanding its knowledge to figure out the bacteria’s tricks.




This graphic was taken from the internet (Author: Washington Post)




The selective advantage of painlessness

First of all painless evolution is the original and most probable type of evolution. If sentient life emerges, however, then there may be an evolutionary advantage in preserving painlessness with regard to certain parts or functions of the body:


In cases where pain does not improve or even worsens the biological fitness, pain should not emerge (or re-disappear) in the course of evolution.


Examples confirming this thesis:

         The desert mole rat has a highly unusual set of physical traits that enables it to thrive in an otherwise harsh, underground environment, including a lack of pain sensation in its skin.

         Grasshopper mice (Onychomys torridus) are resistant to the painful, and potentially lethal, stings of one of their menu items – the Arizona bark scorpion (Centruroides sculpturatus).

         The human brain has none of the three types of pain receptors. Neither the mechanical, thermal nor chemical sensors would be triggering before the underlying cause would already cause major damage to the extremely sensitive structures of the brain. Thus omitting them in favor of a tighter brain structure not disrupted by other neurons is an advantage (Wesley Crusher)





4. The Increase of Pain


Once pain improves the survival value – i.e. once it becomes an adaptive trait – it starts to have an impact on evolution.



4.1  Intensity



Learning mechanisms

The emergence of higher degrees of pain is not an accidental by-product of evolution; it is the consequence of the adaptive function of pain.

The increasing capability to feel pain has to do with the increasing importance of learning mechanisms.

The importance of learning mechanisms increases

         with the lifetime of the creatures and

         with the complexity of the environment.




Pain is realised in biology as an educational tool:

         Vertebrates are relatively long-lived creatures and learning shapes their behaviour.

         Invertebrates are short-lived and their behaviour is largely genetically determined. There is less pressure for the evolution of pain here.

(No brain, no pain? The Hindu, Mar 10, 2005)


There is also a different pressure for the evolution of pain within the invertebrates, depending on the lifetime of the creatures.

Example: Crustaceans like prawns and crabs show responses to injuries that go beyond reflex – prolonged and complicated behavior, which clearly involves the central nervous system. They are capable of learning, just as you would expect to see from an animal that experienced pain. They are even able to weigh different needs when responding to a noxious stimulus [Stelling, 40].

Crustaceans have a similar-sized nervous system like fruit flies, but unlike crustaceans, insects seem to have no pain-related behaviours. Why is that?

Neurons consume a lot of energy and there is evolutionary pressure to keep brains as compact as possible. There need to be good reasons to develop a brain that is capable of feeling pain [Stelling, 41]

The reasons to develop such a brain are lacking in the world of insects:

If an animal’s lifespan is not long enough to benefit from learning – as is the case with most insects – then pain has no use [Stelling, 41].



Complexity of the environment

In his book, The Greatest Show on Earth: The Evidence for Evolution, biologist Richard Dawkins grapples with the question of why pain has to be so very painful. He describes the alternative as a simple, mental rising of a "red flag". To argue why that red flag might be insufficient, Dawkins explains that drives must compete with each other within living beings. The most fit creature would be the one whose pains are well balanced. Those pains which mean certain death when ignored will become the most powerfully felt. The relative intensities of pain, then, may resemble the relative importance of that risk to our ancestors (lack of food, too much cold, or serious injuries are felt as agony, whereas minor damage is felt as mere discomfort). (Pain, Wikipedia)


The behaviour of long-lived creatures is shaped by painful experiences acting on learning mechanisms. A wide range of emotions enhances the capability to respond to a complex environment. A wide range of emotions includes a high degree (intensity and duration) of pain. Under these premises the capability to feel a high degree of pain is superior with regard to biological fitness



Cultural level

The question, if the biological trend continuous on the cultural level is investigated in

The Cultural Evolution of Suffering




4.2  Quantity

The total amount of suffering per year in the natural world is beyond all decent contemplation. During the minute that it takes me to compose this sentence, thousands of animals are being eaten alive, others are running for their lives, whimpering with fear, others are being slowly devoured from within by rasping parasites, thousands of all kinds are dying of starvation, thirst and disease. It must be so.

If there is ever a time of plenty, this very fact will automatically lead to an increase in population until the natural state of starvation and misery is restored (River out of Eden, Richard Dawkins).

The expansion of sentient life is tied to an expansion of pain. Pleasure expands as well, but pain cannot be compensated by pleasure across individuals.




4.3  Distribution


There are two opposing trends in the distribution of pain:


1.      Evolution is a process of increasing differentiation, implying increasing inequalities. Not only are the various forms of life are unequal but also the individual members within each type. Individual inequalities increase with the evolution of the species. Complex organisms differ more from each other than simple organisms. Evolution creates unequal distributions within all dimensions of life, in particular unequal distributions of pain. With the degree of pain, the degree of injustice increases as well:

In a universe of electrons and selfish genes, blind physical forces and genetic replication, some organisms are going to get hurt, others are going to get lucky, and you won't find any rhyme or reason in it, nor any justice. The universe that we observe has precisely the properties we should expect if there is, at bottom, no design, no purpose, no evil and no good, nothing but pitiless indifference [Dawkins, 80-85]


2.      Certain kinds of pain (e.g. the pain of starving or being attacked by predators) are prevented or mitigated by altruism:

Donor-recipient correlation, rather than genetic relatedness, is the key to the evolution of altruism. What is needed for altruism to evolve, is (…) that the recipients of altruism have a greater than random chance of being fellow altruists. Whether this higher than random donor-recipient correlation arises because partners tend to be relatives, or because altruists are able to seek out other altruists and choose them as partners, or for some other reason, makes no difference to the evolutionary dynamics (Biological Altruism, Stanford Encyclopedia of Philosophy).


The net result of these two opposing trends is an increasing injustice in the distribution of pain.





5. Replaying Evolution


Is the emergence of pain a necessary event in evolution? Or would replaying evolution yield a different result?



5.1  Randomness


A common misconception is that evolution has goals, long-term plans, or an innate tendency for "progress" as expressed in beliefs such as orthogenesis and evolutionism (Evolution, Wikipedia)

According to Stephen Jay Gould there is no inherent drive towards long-term progress. Uncritical commentaries often portray evolution as a ladder of progress, leading towards bigger, faster, and smarter organisms, the assumption being that evolution is somehow driving organisms to get more complex and ultimately more like humankind. Gould argued that evolution's drive was not towards complexity, but towards diversification. Because life is constrained to begin with a simple starting point (like bacteria), any diversity resulting from this start, by random walk, will have a skewed distribution and therefore be perceived to move in the direction of higher complexity. But life, Gould argued, can also easily adapt towards simplification, as is often the case with parasites. (Stephen Jay Gould, Wikipedia)






This picture was taken from the internet (author unknown)



According to Gould, evolution would produce very different outcomes every time, if life could be started again. The study of evolution therefore resembles the study of history. It is something we can only understand in retrospect. The course of evolution is often shaped by accidental events:

         The fittest do not always survive. If it hadn’t been for an asteroid strike, for instance, we mammals might still be scurrying about in mortal fear of dinosaurs

         Despite many claims to the contrary, most of the human genome is just junk. This junk has accumulated because natural selection has not been strong enough to remove it.

         In small populations even mutations that are slightly harmful can spread throughout the population simply by chance (see Genetic drift).

         Speciation is almost always an accidental process.





5.2  Constraints



Dawkins’ gene-centered view

Richard Dawkins emphasizes the role of adaptation in evolution. If the environment is reflected in the DNA, then the result of replaying evolution cannot be random.

The utility function of life, that which is being maximized in the natural world is DNA survival. But DNA is not floating free: it is locked up in living bodies and it has to make the most of the levers of power at its disposal. (…) Each change is due to evolution: “Each generation is a filter, a sieve: good genes tend to fall through the sieve into the next generation; bad genes tend to end up in bodies that die without reproducing. (…) Animals are survival machines – robot vehicles blindly programmed to preserve the selfish molecules known as genes” (Dawkins, 2007).


         God's utility function (also called biological utility function or utility function of life) is a phrase coined by Richard Dawkins in his book River Out of Eden (…). Dawkins uses this phrase to expound the Gene-centered view of evolution by equating the phrase to the meaning of life or the purpose of life. This is the why question about life which philosophers and theologians have been pondering in vain for ages, and is a counterpart to the how question about nature which engineers have been able to resolve successfully (…)

         Dawkins rephrases the word purpose in terms of what economists call a utility function, meaning "that which is maximized". Engineers often investigate the intended purpose (or utility function) of a piece of equipment using reverse engineering. Dawkins uses this technique to reverse-engineer the purpose in the mind of the Divine Engineer of Nature, or the Utility Function of God.

         According to Dawkins, it is a mistake to assume that an ecosystem or a species as a whole exists for a purpose. In fact, it is wrong to suppose that individual organisms lead a meaningful life either (…). The unit of selection is the gene, not an individual, or any other higher-order group as championed by proponents of group selection. In nature, only genes have a utility function – to perpetuate their own existence with indifference to great sufferings inflicted upon the organisms they build, exploit and discard (God’s Utility Function, Wikipedia).



Gould’s criticism

Gould views selection as working on many levels, and has called attention to a hierarchical perspective of selection. Gould also called the claims of Selfish Gene "strict adaptationism" and describing them as excessively "reductionist". He saw the theory as leading to a simplistic "algorithmic" theory of evolution, or even to the re-introduction of a teleological principle (…) To Gould, the fatal flaw was that "no matter how much power Dawkins wishes to assign to genes, there is one thing that he cannot give them – direct visibility to natural selection.” Rather, the unit of selection is the phenotype, not the genotype, because it is phenotypes that interact with the environment at the natural-selection interface. So, in Kim Sterelny's summation of Gould's view, gene differences do not cause evolutionary changes in populations, they register those changes.”

Richard Dawkins comments on what he sees as the main difference between his position and that of the late Stephen Jay Gould. He concludes that it is his own vision that genes play a causal role in evolution, while Gould sees genes as passive recorders of what worked better than what (Gene-centered view, Wikipedia)



Convergent evolution

Richard Dawkins insists that although mutations may be random, evolution is not. If we look at how evolution has turned out on neighboring islands, then we see the constraints to randomness. There are only limited ways of flying and swimming, for instance, which is why wings and fins have independently evolved on many occasions (see Convergent evolution) [Holmes]

What would be the result of replaying evolution?

1.      The emergence of complex cells depended on a highly unlikely merger of two kinds of simple cells. Bacteria-like life forms could therefore be expected, but not more sophisticated organisms.

2.      Assumed that life did get past this hurdle, one could expect to see photosynthesisers and predators, parasites and decomposers. Big-brained primates are highly unlikely but some other brainy, social animal could take over the planet. There’s clearly an adaptive zone in most habitats that involves intelligence. And it has become clear that many traits we once thought of a uniquely human, from language to tool-making, exist to some extent in many other animals [Holmes].... in particular the capability to experience pain.



Energy density

According to Michael Chorost evolution is not a contingent process. It will be possible to define”progress” in objective terms and explain why it must happen. His thesis is based on four arguments [Chorost]:

1.      A popular thesis says that evolution is determined by growing complexity, respectively growing negative entropy. But many organisms (especially parasites) are successful thanks to a reduction in complexity. According to Eric Chaisson evolution is determined by growing energy density.

2.      Energy gradients provide a loophole in the second law of thermodynamics that permits life to arise and ascend.

3.      A strong argument against contingency is the phenomenon of convergent evolution. In many cases, very different species living in similar environments have independently evolved in similar ways. The tape of life has been rerun many times – at least partially. Many outcomes of evolution are not accidental but inevitable.

4.      Catastrophes only delay or accelerate the developmental process, but they do not significantly change it. If the dinosaurs weren’t killed by a meteorite they would have survived until Earth’s next glaciation. The cold would have killed off those dinosaurs living north and south of the tropics, opening up niches for the warm-blooded mammals and birds that coexisted with them. Eventually tool-users not unlike us would have evolved and sooner or later any dinosaurs remaining in the tropics would have been hunted to extinction.

While the outcome of evolution is not fully determined, it is powerfully constrained. Direction and constraint, however, do not imply design and purpose.




6. Conclusion



The role of pain in evolution

         The fact that pain states are associated with damaging experiences is the result of natural selection. Pain can be an adaptive trait and improve the survival value.

         In other cases pain is only a by-product of natural selection. The same allele can produce senseless pain or superior adaptation depending on the combination with other alleles, i.e. it produces either handicapped or advantaged individuals with regard to biological fitness. If the result is a net reproductive advantage, then the allele will tend to increase in frequency in the population.



The increase of pain

         Once pain improves the survival value, it starts to have an impact on evolution.

         The increasing capability to feel pain has to do with the increasing importance of learning mechanisms. The importance of learning mechanisms increases with the lifetime of the creatures and with the complexity of the environment. The behaviour of long-lived creatures is shaped by painful experiences acting on these learning mechanisms. A wide range of emotions enhances the capability to respond to the environment. A wide range of emotions implies a high degree (intensity and duration) of pain. Under these premises the capability to feel a high degree of pain is superior with regard to biological fitness



The distribution of pain

         Certain kinds of pain are prevented or mitigated by the phenomenon of biological altruism.

         The general trend is an increasing inequality (injustice) in the distribution of pain.



Cultural level

The question, if the biological trend continuous on the cultural level is investigated in

The Cultural Evolution of Suffering







1.      Bateson Patrick (1991), Assessment of pain in animals, Animal Behavior 42, 827-839.

2.      Bonavita V., De Simone R. (2011), Pain as an evolutionary necessity, Neurological Sciences, Vol.32, Supplement 1, 61-66

3.      Braithwaite Victoria (2010), Do Fish Feel Pain?, Oxford University Press

4.      Broom, D.M. (2001), The Evolution of Pain, University of Cambridge

5.      Chandroo Kristopher Paul, Yue Stephanie, Moccia Richard David (2004), An evaluation of current perspectives on consciousness and pain in fishes, Fish and Fish Series, 5, Aquaculture Centre, University of Guelph, Canada

6.      Chorost Michael (2012), The Ascent of Life, New Scientist, 21 january, p.35

7.      Dawkins Richard (1995), God's Utility Function, Scientific American, Nov., 80-85

8.      Dawkins Richard (2007), Study Notes

9.      DeGrazia David, What Animals are Like

10.  O’Donoghue James (2015), Small Wonders, New Scientist, 7 November, 36-39

11.  Finlay Barbara (2015) The unique pain of being human, New Scientist, 9 May, 28-29

12.  Hamzelou Jessica (2010), The scanner that feels your pain, in New Scientist, 6 March, p.6

13.  Holmes Bob (2015), Life Chances, New Scientist, 14 March, 32-35

14.  Laland Kevin (2016), Evolution Evolves, New Scientist, 24 September, 42-45

15.  Melzack Ronald (2007), Pain: Past Present and Future

16.  Metzinger Thomas (2009), Der Ego Tunnel, Berlin Verlag

17.  Metzinger Thomas (2017), Suffering, the cognitive scotoma, in The Return of Consciousness, pp.237-262, Editors Kurt Almqvist & Anders Haag, Stockholm, Sweden

18.  Nagasako E.M., Oaklander A.L., Dworkin M.H. (2003), Congenital Insensitivity to Pain: an Update, Pain 101, 213-219, Elsevier

19.  Nesse Randolph M. (1991), What Good is Feeling Bad? The Sciences, Nov./Dec.

20.  Nesse Randolph M., Williams George C. (1998), Evolution and the Origins of Disease, Scientific American, November

21.  Plutchik Robert (1962), The Emotions, Revised Edition, University Press of America

22.  Rose James D. (2002), The Neurobehavioral Nature of Fishes and the Question of Awareness and Pain, CRC Press

23.  Saidel Eric (2007), The Evolution of Pain, An Argument for the Causal Efficacy of Mental States, University of Southwestern Lousiana

24.  Schatz Gottfried (2011), Planet der Mikroben, Warum wir Infektionskrankheiten nie endgültig besiegen werden, Neue Zürcher Zeitung Nr.274 vom 23.Nov, S.53

25.  Segner Helmut (2012). Fish.Nociception and Pain – A Biological Perspective. Ethics commission of the Swiss confederation.

26.  Senate of Canada, Standing Committee on Legal and Constitutional Affairs (2003), Bill C-10B (Cruelty to Animals), June.12, Do Invertebrates Feel Pain?

27.  Smith Ewan, Lewin Gary (2009), Nociceptors: a phylogenetic view, Journal of Comparative Physiology, 195(12): 1089–1106.

28.  Sneddon Lynne U. (2004), Evolution of Nociception in Vertebrates: Comparative Analysis of Lower Vertebrates, Brain Research Reviews, 46(2), 123-130.

29.  Stelling Tamar (2014), Alien Pain, New Scientist, 22 Feb, 38-41